Made on behalf of Defendant in COPA Claim

Made on behalf of Claimants in the Coinbase Claim, the Kraken Claim and the BTC Core Claim
Second Witness Statement Dr Craig Steven Wright

Dated 9 October 2023

IN THE HIGH COURT OF JUSTICE
BUSINESS AND PROPERTY COURTS OF ENGLAND AND WALES
INTELLECTUAL PROPERTY LIST (ChD)

Claim No. IL-2021-000019
(the “COPA Claim”)

BETWEEN:
CRYPTO OPEN PATENT ALLIANCE
Claimant
-and -
DR CRAIG STEVEN WRIGHT
Defendant
Claim No. IL-2022-000035
(the "Coinbase Claim")
BETWEEN:

(1) DR CRAIG STEVEN WRIGHT
(2) WRIGHT INTERNATIONAL INVESTMENTS LIMITED

Claimants
-and -
(1) COINBASE GLOBAL, INC.
(2) CB PAYMENTS, LTD
(3) COINBASE EUROPE LIMITED
(4) COINBASE, INC.
Defendants

Claim No. IL-2022-000036
(the "Kraken Claim")
BETWEEN:
(1) DR CRAIG STEVEN WRIGHT
(2) WRIGHT INTERNATIONAL INVESTMENTS LIMITED
1

Claimants
-and -

(1) PAYWARD, INC.
(2) PAYWARD LTD.
(3) PAYWARD VENTURES, INC
Defendants

Claim No. IL-2022-000069
(the “BTC Core Claim”)

BETWEEN:
(1) DR CRAIG STEVEN WRIGHT
(2) WRIGHT INTERNATIONAL INVESTMENTS LIMITED
(3) WRIGHT INTERNATIONAL INVESTMENTS UK LIMITED

Claimants

b) BLOCK, INC.
(17) SPIRAL BTC, INC.
(18) SQUAREUP EUROPE LTD
(19) BLOCKSTREAM CORPORATION INC.

(20) CHAINCODE LABS, INC @
2

(21) COINBASE GLOBA INC.
(22) CB PAYMENTS, LTD
(23) COINBASE EUROPE LIMITED
(24) COINBASE INC.
(25) CRYPTO OPEN PATENT ALLIANCE
(26) SQUAREUP INTERNATIONAL LIMITED

Defendants

SECOND WITNESS STATEMENT OF DR CRAIG STEVEN WRIGHT

I, CRAIG STEVEN WRIGHT, o_state as follows:

Introduction

1.

I refer to my first witness statement dated 28 July 2023. I make this witness statement in
response to requests 19 to 23 of the Combined Request for Further Information dated 23
June 2023. I make this statement on my own behalf and am also authorised to make it on
behalf of the other Claimants in the Coinbase Claim, the Kraken Claim and the BTC Core

Claim.

To prepare this witness statement, I was sent requests 19 to 23 and asked to consider
them. I then prepared a draft statement. I discussed this with my solicitors, who then
amended the draft to reflect my further comments and sent it to me for review and

amendments. This process was then repeated until the witness statement was complete.

I have been asked to confirm the following:

“The purpose of this witness statement is to set out matters of fact of which I have
personal knowledge. I understand that it is not my function to argue the case, either
generally or on particular points, or to take the court through the documents in the
case. This witness statement sets out only my personal knowledge and recollection,

in my own words. On points that I understand to be important in the case, I have

>

stated honestly (a) how well I recall matters and (b) whether my memory has been
refreshed by considering documents, if so how and when. I have not been asked or
encouraged by anyone to include in this statement anything that is not my own
account, to the best of my ability and recollection, of events I witnessed or matters
of which I have personal knowledge.”

I confirm this is correct.
Background

4. Bitcoin’s construction and infrastructure allows for a unique feature where messages can
be ‘signed’ using a private key and then verified by others to ascertain the authenticity of
the message origin. This can be instrumental in proving the possession and control of a

Bitcoin address without revealing the associated private key.

5. Inthe demonstrations to Rory-Cellan Jones (BBC) and Ludwig Siegele (the Economist)
and in the demonstrations to Jon Matonis and Gavin Andresen, I used this feature to
demonstrate that I was in possession of the private keys associated with the early blocks
using one of the two methods below:

a. Bitcoin message verification (cross-system);

b. Electrum message verification (across two computers).

6. Iexplain each method in general terms below.

Bitcoin Message Verification (Cross-System)

7. The preliminary action entails procuring the Bitcoin Core software. Where one device is
configured to run using two different operating systems (for example Windows and a

Linux environment operating on a hypervisor virtual machine), a version of the Bitcoin
Core software compatible to both systems should be downloaded. The software should

| '3

10.

11.

be sourced directly from the official Bitcoin Core website to ensure the utmost security
and authenticity. Avoiding third-party sources significantly mitigates the risk of

encountering spurious or tampered versions.

Following this stringent sourcing criterion, the software should be downloaded and
securely housed. For a device using two different operating systems, this should be
housed in the shared partition, denoted as ‘C:’. This systematic approach to acquiring the
software underscores the dedication to procedural integrity and safeguarding system
resources. Note that a device using Windows and Linux requires two downloads as the

Windows and Linux software uses separate install files.

Once the Bitcoin Core software is successfully installed, it should be initiated to establish
a connection to the Bitcoin network. The software begins the process of synchronising
with the network, downloading and verifying the entire blockchain history. Given the
size of the blockchain, this synchronisation process can be time-intensive. It’s crucial for
ensuring that the local instance of the software is up-to-date with all transactions on the
network, bolstering security and functionality. Upon completion of this synchronisation,
the software indicates its up-to-date status, affirming that it has the most recent record of
transactions and blocks from the Bitcoin network.

Message ‘Signing’ on the Origin System

On the source system, using the Bitcoin Core command-line interface, one can create a
‘digital signature’ for a given message when that person is also the owner of the private

key, as ‘signing’ is a function of identity and not mere possession:
bitcoin-cli signmessage "_bitcoin_address" "chosen_message"
Upon execution, the message is processed using the ‘digital signature’ algorithm. This

command yields a message digest (message hash), referred to as a ‘digital signature’,
which serves as a cryptographic proof that the message was ‘signed’ by the private key

a

corresponding to ‘_bitcoin_address’.

12.

13.

14.

15.

Transferring the ‘Signature’ and Message

When combined with the original message, message digest and the ‘digital signature’,
the output can then be transferred to any other system using conventional methods (e.g.
by email, file transfer or even manual transcription). In the case of the demonstrations I
refer to below I did this by copying between the Windows system and a Linux virtual
machine. The essential element is ensuring the integrity of both the message and the

‘signature’ during transfer.

Message Verification on the Destination System

Once the ‘signed’ message and its accompanying ‘signature’ are on the target system,

the verification process can be initiated:

bitcoin-cli verifymessage "_bitcoin_address™ “received_signature"

"chosen_message"

If the command returns ‘true’, it confirms that the ‘received_signature’ corresponds to
the ‘chosen_message’ and was indeed ‘signed’ by the private key associated with the

‘_bitcoin_address’.

Matching the Address with an Online Source

To correlate the ‘_bitcoin_address’ with an online source, one can utilise various online
blockchain explorers. By inputting the Bitcoin address into the explorer’s search bar, one
can retrieve transaction histories, balances, and other associated data, verifying that the
address is valid and active within the Bitcoin network.

=R

Electrum Message Verification (Across Two Computers)
16. Electrum is a lightweight Bitcoin wallet that does not require users to download the entire
blockchain. Notably, its functionalities encompass the ‘signing’ and verification of

messages using Bitcoin addresses, akin to the Bitcoin Core software.

Setting Up Electrum

17. To set up Electrum the following steps should be undertaken:

a. Downloading Electrum: Navigate to the official Electrum website at
https://electrum.org. Ensure one is visiting the genuine site to avoid any counterfeit
versions. Click on the ‘Download’ section and select the version that matches one’s

operating system.

b. Installation: Once the download is complete, run the installer and follow the on-
screen instructions. Launch Electrum upon completion and choose to create a new

wallet or import an existing one.

18. This process should be undertaken for both computers (although it is not necessary to
create or import a wallet on the second computer).

‘Signing’ the Message

19. To ‘sign’ a message, on the first computer, after setting up one’s wallet and ensuring
one’s Bitcoin address is loaded, head to the ‘Tools’ menu and select ‘Sign/verify
message’. Input the message one intends to ‘sign’ and the relevant Bitcoin address from

one’s wallet. Click on ‘Sign’ to generate the ‘digital signature’.

Transferring the ‘Signature’ and Message to the Second System
7

dl

20.

21.

One can transmit the ‘signed’ message and its associated ‘signature’ from the first
computer to the second computer via various means. This could involve sending an
email, utilising a USB flash drive, utilising cloud storage, or even manually noting them
down, ensuring both the message and the ‘signature’ remain unchanged in transit. In the

relevant demonstration below, a USB flash drive was used.

Verifying the Message on the Second Computer using Electrum

To verify the message on the second computer, after launching Electrum, navigate to
“Tools’ and select ‘Sign/verify message’. Insert the Bitcoin address, the original message,
and the received ‘signature’ into the respective fields. Press ‘Verify’. If the software
returns a confirmation, it attests that the message was ‘signed’ by the private key

associated with the provided Bitcoin address.

Advantages of this Approach

22.

The evident merit of the above methodologies is that the second system/computer,
employed for verification, does not require possession of the private key. Thus, the risk
of exposing one’s private key is mitigated, especially if the verification process is
conducted on a machine that is not secure. By decentralising the ‘signing’ and verification
steps across two systems/computers, the integrity of the process is bolstered, and

potential vulnerabilities are curtailed.

The demonstration to Rory Cellan-Jones and Ludwig Siegele

235

At paragraphs 208 to 212 of my first witness statement, I explained the meetings with
the journalists, which took place in April 2016. While I cannot recall the demonstrations

exactly, I have set out below the best of my recollection.

8 &,

24.

25.

26.

27.

28.

29.

For each journalist, I recall demonstrating to them separately at least possession of the
private key associated with block 9 using the Bitcoin Message Verification (Cross-

System) method.

In particular, I recall using my Eurocom laptop especially configured to run on two
separate operating systems, namely, a Windows 10 Enterprise system and a CentOS 7.2
(a Linux distribution) environment operating on a hypervisor virtual machine. This set
up allowed shared access to the 'C:' partition by both operating systems, facilitating
uniform file access and management across the operating systems. On this, I had
downloaded the Bitcoin Core software on both operating systems. I verified this by using
the cryptographic hash, which I address below.

First, I “signed” each said message with the text of a speech by Jean-Paul Sartre (the
“Sartre.txt”) using the private key for the Bitcoin address associated with block 9 of the
Bitcoin blockchain on the Windows operating system (the source system).

In particular, on the Windows operating system (the source system), using the Bitcoin
Core command-line interface, I ‘signed’ the message “Sartre.txt” using the private key

for block 9, as follows:
bitcoin-cli signmessage "address_of block_9" "Sartre.txt"

This generated a digital ‘signature’, which cryptographically asserted that the message
“Sartre.txt” was ‘signed’ using the private key corresponding to the Bitcoin address from
block 9.

Once I had the ‘signature’ and the message, I was able to copy it across from the
Windows operating system (the source system) to the CentOS operating system (the
receiving system) on the same laptop. This was possible because I used a virtual machine

for the Linux installation.

¢

30.

31

Upon receiving the Sartre.txt message and its ‘digital signature’ on the CentOS operating
system (the receiving system), I used the following command on the Bitcoin Core

software:

bitcoin-cli verifymessage "address_of_block_9" "received signature”

"Sartre.txt"

A return of “true” from this command affirmed that the provided ‘signature’ for the
message “Sartre.txt” was genuine, and that the message had been ‘signed’ using the
private key of the block 9 Bitcoin address.

The demonstration to Jon Matonis

32.

At paragraphs 191 to 193 of my first witness statement, I explained my meeting with Jon
Matonis. Here, I used the method described in paragraphs 23 to 31 above (the Bitcoin
Message Verification (Cross-System) method). However, a different message was used
and, in addition to the private key for the Bitcoin address associated with block 9, I also
believe I used the method in relation to the private key for the Bitcoin address associated
with block 11.

The demonstration to Gavin Andresen

33.

At paragraphs 194 to 207 of my first witness statement, I explained my meeting with
Gavin Andresen. My recollection is as follows: Following our conversation over email,
Gavin wanted to travel to London. We met in a private room at a central London hotel,
with Rob MacGregor and Stefan Matthews present. Following a lengthy discussion
sharing insights into the creation of Bitcoin, its past, present and future as well as
covering deeply personal territories, I agreed to use the ‘digital signature’ process to

confirm possession of the early keys.

‘ &

34,

35.

36.

31

38.

39.

I was to use my own Lenovo laptop. For Gavin, Rob organised the purchase of a brand-

new laptop from a retail store.

Computer Setup and Software Installation

I already had Electrum installed on my own laptop. This had been downloaded from
Electrum’s website: https:/electrum.org. This laptop ran on the CentOS (Linux)

operating system in a virtual machine.

Once Gavin’s new laptop arrived, Gavin took the lead in setting it up from scratch. This
necessitated an operating system installation. It ran a version of Windows, though I am

not personally sure of the specific variant. My best estimate is that it was Windows 10.

Gavin was responsible for the setup. He first installed the Windows operating system,
after which he connected the computer to the hotel’s Wi-Fi network. Once the necessary
updates and initial configurations for Windows were completed, Gavin proceeded to

consider the appropriate Bitcoin wallet software for the machine.

Given that the Bitcoin Core software can often be time-consuming to synchronise with
the entire blockchain, we discussed which software to use and my recollection is that
Gavin opted for Electrum, a lightweight Bitcoin wallet that doesn’t require
synchronisation with the entire blockchain. Gavin followed standard software installation
best practices. He began by downloading Electrum directly from the official website.
Before proceeding with the installation, he verified the integrity of the downloaded
software by comparing its hash value with the one provided on the website, ensuring that
the software hadn’t been tampered with or corrupted. Following this, Gavin proceeded
with the installation of Electrum on the machine.

I cannot, with certainty, specify the exact version of Electrum that Gavin installed. All I
am sure of is that he sourced it directly from the official Electrum website, ensuring its

&

authenticity and security.
11

40.

Message ‘Signing’ and Verification with Electrum Wallet

I gave Gavin the choice to select any of the first 11 blocks for me to use for the

demonstration. He selected blocks 1 and 9. In each case, I proceeded as follows:

a. On my laptop (the originating computer), I opened my Electrum wallet and
navigated to the particular Bitcoin address selected by Gavin, possessing the
private key with which I wished to ‘sign’ the message.

b. Under the ‘Tools* tab, I selected ‘Sign/Verify Message’.

c. Inthe dialog box that emerged, I typed in the message read out by Gavin (which I
cannot now recall) in the ‘Message’ field.

d. Upon ensuring the message’s accuracy with Gavin, I clicked on ‘Sign’. Electrum
prompted for a password as the wallet was encrypted. I entered this.

e. Once the message was ‘signed’ (or rather processed by the ‘digital signature’
algorithm), Electrum displayed the ‘digital signature’ in the ‘Signature’ box.

f. Icopied and pasted this ‘digital signature’ to Windows notepad.exe and saved the
file on a USB key which Gavin brought and provided to me. I cannot remember
the name of the file each time, but it was something like “SignedMessage.txt File”.

g. Isafely ejected the USB key from my laptop (the originating computer) and gave
it to Gavin who inserted it into his new laptop (the second computer). Gavin copied
the ‘SignedMessage.txt’ file from the USB drive to the local storage of his new
laptop (the second computer).

h. Gavin opened Electrum on his laptop (the second computer).

i. Gavin let me navigate to the ‘Tools’ tab and select ‘Sign/Verify Message’ on his
laptop (the second computer) as he watched closely.

U I typed the original message chosen by Gavin into the ‘Message’ box.

k. Ithen opened the ‘SignedMessage.txt’ file.

1. Icopied the ‘digital signature’ from the text file into the ‘Signature’ box and clicked
‘Verify’.

12

&

41.

The first time in relation to the first block, this failed as I typed in the original message
incorrectly. Gavin noticed that there was a typo and a word was misspelt. Once the typo

was corrected, in each instance Electrum then confirmed the authenticity of the message.

Bitcoin Core Installation

42.

43.

45.

On the Eurocom laptop used in the demonstrations above, I made sure that I adopted best
practices when downloading and installing the Bitcoin Core software. I have described
this below. I communicated this practice to the individuals involved in the demonstration
so that they knew the process had been rigorously followed. The individuals could have
validated the software installation themselves if they chose.

Secure Environment

I ensured that the Eurocom laptop’s systems were protected with up-to-date security

software, reducing the risks associated with potential malware or unwanted intrusions.

Software download

The Bitcoin Core software which I downloaded was, I believe, v0.11.2. This version was
compatible with Windows and Linux-based operating systems. It was sourced from the
official Bitcoin Core website. Avoiding third-party sources significantly mitigated the
risk of encountering spurious or tampered versions. The software was subsequently
downloaded and securely housed within the shared partition, denoted as ‘C:’. Note that

two downloads occurred as the Windows and Linux software uses separate install files.
Software verification

Before addressing the method of verification, it may be useful to explain why software
verification important. The foundational purpose behind software verification is twofold:

to ensure the authenticity and to validate the integrity of the software.
13

&

46.

47.

Authenticity: By verifying software, users are reassured that the software has been
sourced from a legitimate and recognised origin, mitigating risks associated with

counterfeit or maliciously disguised software.

Integrity: Beyond just verifying the source, software verification ensures that the
software remains unaltered from its original state when produced by the software
developers. This ensures that it’s free from any post-production modifications

which might introduce vulnerabilities or malicious functionalities.

Cryptographic Hash Functions

It may also be useful to briefly describe how software verification works. It is founded
on the concept of cryptographic hash functions. A hash function is a mathematical
algorithm that transforms any arbitrary data (often called the input) into a fixed-length
series of bytes, typically manifesting as a string of alphanumeric characters. The resultant
output, known as the hash value or hash digest, is uniquely representative of the given
input. Two critical properties define these functions:

Deterministic: For a given input, the hash function will always produce the same

hash value.

Avalanche Effect: Even the minutest alteration in the input will produce a
dramatically different hash value, making any change, no matter how trivial, easily
detectable.

Hash Acquisition - SHA256

CentOS has long been recognised for its commitment to system security and stability.
Integral to its suite of security tools is the Secure Hash Algorithm (SHA), particularly the
SHA-256 variant.

14

%

48.

49.

50.

51.

The SHA-256 algorithm belongs to the Secure Hash Algorithm 2 (SHA-2) family, a
cryptographic hash function designed by the National Security Agency (NSA) and
promulgated by the National Institute of Standards and Technology (NIST) in 2001. The
numeral ’256’ in SHA-256 stands for the bit length of the hash output or digest.
Specifically, the output is 256 bits or 32 bytes in length, culminating in a fixed-size, 64-

character hexadecimal number.

Within the CentOS operating system, the ‘coreutils’ package furnishes a utility named
‘sha256sum‘. This utility empowers users to generate and verify SHA-256 cryptographic
hashes. A quintessential application of this utility, especially when handling software like
Bitcoin Core, is in the verification of the integrity of downloaded files.

To expand on this, when one issues the command ‘sha256sum /path/to/file’, the SHA-
256 hash of the designated file is produced. This resultant hash can then be juxtaposed
with a trusted hash value, typically proffered by software developers on their official
platforms. Should the two hash values correspond, one can be imbued with confidence
regarding the file’s integrity, assured that no tampering has occurred since the creation
of the trusted hash.

In software installations, especially those sourced from open-source repositories or direct
online downloads, the verification of SHA-256 hashes is an important step which ensures
that the software remains unaltered, neither by malicious intent nor inadvertent
corruption during transmission. Given the gravitas of operations on platforms like
Bitcoin where even the slightest aberration in the software can precipitate profound
financial consequences the tools such as ‘sha256sum‘ in CentOS assume a central role in

ensuring software integrity.

B

15

52.

53.

54.

55.

56.

Hash Verification on Windows

On the Windows 10 Enterprise platform on my Eurocom laptop, the in-built utility of
Windows PowerShell was my tool of choice to verify the cryptographic hash. Windows
PowerShell, with its robust set of cmdlets (command-let functions), provides an array of

tools designed for system administration, including hash computation.

I ran the following command:

Get-FileHash C:\downloads\bitcoin file name -Algorithm SHA256

As a result, I was able to obtain the SHA-256 hash value of the Bitcoin Core software
file situated within the ‘C:’ partition. This computed hash was then juxtaposed with the
official SHA-256 hash, obtained from the Bitcoin Core website, confirming that they
were the same. This confirmed the authenticity of the downloaded software and also
allayed concerns about potential tampering or corruption during the download process.

Hash Verification on CentOS

For the CentOS 7.2 VM, I utilised the terminal and ran the following command on the
file in the shared partition:

sha256sum /mount_path to C_downloads_on_CentOS/bitcoin_file_name

Again, the matching hash outputs from this and the official hash cemented the software’s

authenticity on the Linux environment.

) iS

57.

58.

59.

60.

61.

Windows Installation

With the shared partition’s utility, I directly ran the installer from ‘C:’ on the Windows
10 Enterprise system, navigating through the on-screen instructions completing a

successful installation.

CentOS Installation

On the CentOS 7.2 VM, taking advantage of the shared access to the ‘C:’ partition, I
extracted the downloaded tarball and commenced the installation process, ensuring

Bitcoin Core was appropriately set up.

Connecting to the Bitcoin Network

Once the Bitcoin Core software was successfully installed on both systems, it was
initiated to establish a connection to the Bitcoin network. The software began the process
of synchronising with the network, downloading and verifying the entire blockchain
history.

Upon completion of this synchronisation, the software indicated its up-to-date status,
affirming that it had the most recent record of transactions and blocks from the Bitcoin
network.

Operational Confirmation

With the software installed and synchronised:

a. Status Check: I routinely checked Bitcoin Core’s status to ensure it remained
connected to the network and updated with the most recent blocks.

17

b. Backup and Maintenance: I set up periodic backups of the Bitcoin Core wallet and
data, ensuring data safety. Furthermore, scheduled checks for software updates
were put in place to ensure that Bitcoin Core was always running the latest, most

secure version.

Conclusion

62. The installation of Bitcoin Core on the dual platforms completed without any difficulties.
The use of the shared partition simplified the process. The detailed verification of
software integrity ensured its authenticity and protected against potential tampering or

corruption during the downloading phase.

Statement of Truth
I believe the facts stated in this witness statement are true. I understand that proceedings for
contempt of court may be brought against anyone who makes, or causes to be made, a false

statement in a document verified by a statement of truth without an honest belief in its truth.

Signed:

Name:
Dated:

18

Certificate of Compliance

I hereby certify that:
1. I am the relevant legal representative within the meaning of Practice Direction 57AC.
2. I am satisfied that the purpose and proper content of trial witness statements, and

proper practice in relation to their preparation, including the witness confirmation
required by paragraph 4.1 of Practice Direction 57AC, have been discussed with and
explained to Dr Craig Wright.

3. I believe this trial witness statement complies with Practice Direction 57AC and
paragraphs 18.1 and 18.2 of Practice Direction 32, and that it has been prepared in

accordance with the Statement of Best Practice contained in the Appendix to Practice

Direction 57AC.
WA
Signed: u/
Name: Antony Craggs
Position: Partner
Dated: 9 October 2023

19

DiPasquaE
Text Box
Antony Craggs

DiPasquaE
Text Box
Partner

DiPasquaE
Text Box
9 October 2023

DiPasquaE
Stamp

